

2021 - Año de Homenaje al Premio Nobel de Medicina Dr. César Milstein

PROBLEMA 1 - RESPONDE, JUSTICANDO TUS RESPUESTAS:

- a) ¿Cuántos lados posee un polígono por el que se pueden trazar 10 diagonales desde un vértice?
- b) ¿Cuál es la superficie lateral de un prisma recto cuya base es un triángulo equilátero de $62,34cm^2$ de superficie y ésta representa el 20% de la superficie de una de sus caras laterales?
 - c) ¿Cuándo dos conjuntos son disjuntos?

PROBLEMA 2 - DETERMINA:

- a) el o los valores que puede asumir el dígito "p" tal que el número 2p40 sea divisible por 3
- b) el recíproco de "m" siendo "m" el cociente entre el divisor primo de 16 y el menor divisor de 25, distinto de 1
- c) un conjunto B que posea 2 elementos tal que $B \subset D_9$ y además ninguno de los elementos de B es un número primo.

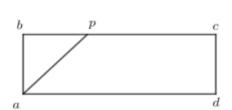
PROBLEMA 3

La base de una pirámide recta es un cuadrado de $441cm^2$ de superficie.

Si la medida de la arista lateral equivale a las cinco terceras partes de la medida de uno de los lados de la base, calcula:

- a) El perímetro de una de las caras laterales de la pirámide.
- b) La apotema de la pirámide, sabiendo que la superficie lateral de la misma es 1402,38cm².

PROBLEMA 4


- a) En un negocio de venta de golosinas se preparan cajas pequeñas y cajas grandes con alfajores.
 Cada caja grande contiene 1 docena de alfajores y cada caja pequeña, 4 alfajores.
 El día martes Agustín tuvo que colocar 440 alfajores en las cajas. Si preparó 30 cajas grandes, ¿cuántas cajas pequeñas preparó ese día?
- b) Para regalarle a su prima, Nicolás compra una caja grande de alfajores y una bolsa con chupetines. Gasta \$506. El precio de la bolsa de chupetines equivale a las tres octavas partes de lo que cuesta la caja grande de alfajores. ¿Cuánto cuesta la bolsa con chupetines?

PROBLEMA 5

abcd es un rectángulo de 160cm de perímetro . abp es un triángulo rectángulo en donde la longitud de \overline{ab} coincide con la de \overline{bp} .

Además, la longitud \overline{pc} es el triple de la longitud de \overline{bp} .

- a) Calcula la superficie del trapecio apcd
- b) ¿Qué porcentaje de la superficie del rectángulo representa la superficie del trapecio?

2021 - Año de Homenaje al Premio Nobel de Medicina Dr. César Milstein

MATEMÁTICA - RESOLUCIÓN EXAMEN DE INGRESO 2021 - IPS

PROBLEMA 1

a)
$$n-3 = 10 \Rightarrow n = 13$$

Rta: el polígono posee 13 lados

b) Sup. base prisma: $62,34cm^2 \rightarrow 20\%$ de la superficie de una cara.

Sup. de 1 cara lateral:
$$\frac{100 \cdot 62,34cm^2}{20} = 311,7cm^2$$

El prisma de base triangular posee 3 caras laterales, entonces la superficie lateral es: $311.7cm^2 \cdot 3 = 935.1cm^2$

Rta: la superficie lateral del prisma es 935, 1cm²

c) Si la intersección de dos conjuntos es vacía, a estos conjuntos se los llama disjuntos.

PROBLEMA 2

a) $(2+p+4+0) \in M_3 \Rightarrow (6+p) \in M_3$; entonces los posibles valores de p son: 0; 3; 6; 9 Rta: los posibles valores de p son 0; 3; 6; 9

b)
$$m = \frac{2}{5} \Rightarrow \frac{1}{m} = \frac{5}{2}$$

Rta: el recíproco de m es $\frac{5}{2}$

c) $D_9 = \{1; 3; 9\}; entonces B = \{1; 9\}$

$$Rta: B = \{1; 9\}$$

PROBLEMA 3

a) Base de la pirámide, cuadrado cuya superficie es: 441cm².

Para obtener la medida de la arista de la base: $\sqrt{441cm^2} = 21cm$

Medida de la arista lateral: $\frac{5}{3} \cdot 21 = 35cm$

Perímetro de una cara lateral (triángulo isósceles) = $21cm + 2 \cdot 35cm = 91cm$

Rta: el perímetro de una cara lateral es 91cm

2021 - Año de Homenaje al Premio Nobel de Medicina Dr. César Milstein

b) Sup. lateral pírámide =
$$\frac{perímetro de la base \cdot apotema}{2}$$
 \Rightarrow 1402,38cm² = $\frac{4 \cdot 21cm \cdot apotema}{2}$ \Rightarrow apotema = 33,39cm

Rta: la medida de la apotema es 33,39cm

PROBLEMA 4

a) $cajas grandes \rightarrow 1 docena de alfajores$

cajas pequeñas \rightarrow 4 alfajores

 $martes \rightarrow se\ envasaron\ 440\ alfajores\ y\ 30\ cajas\ grandes; 30\cdot 12\ alfajores\ =\ 360\ alfajores$

440 alfajores — 360 alfajores = 80 alfajores para armar las cajas pequeñas

80:4=20 cajas pequeñas

Rta: se prepararon 20 cajas pequeñas

b) costo de la bolsa de chupetines (B) $\rightarrow \frac{3}{8}$ del costo de la caja grande(C)

$$C + B = $506$$

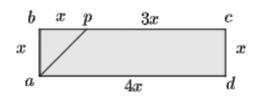
$$C + \frac{3}{8}C = \frac{11}{8}C$$

$$\frac{11}{8}C \to \$506$$

$$\frac{1}{8}C \rightarrow \$506:11 = \$46$$

$$\frac{8}{8}C \rightarrow $46 \cdot 8 = $368$$

$$$506 - $368 = $138$$


Rta: la bolsa de chupetines cuesta \$138

PROBLEMA 5

a) Perímetro del rectángulo: 160cm

$$10x = 160cm \Rightarrow x = 16cm$$

Sup. trapecio apcd =
$$\frac{(48cm+64cm)\cdot 16cm}{2}$$
 = $896cm^2$

Rta: la superficie del trapecio es 896cm²

b)
$$Sup.rectángulo = 64cm \cdot 16cm = 1024cm^2$$

$$\frac{896cm^2 \cdot 100\%}{1024cm^2} = 87,5\%$$

Rta: el porcentaje es de 87,5%